紫外线灯 uv灯 紫外线消毒灯 紫外线杀菌灯 紫外线杀菌灯管 紫外线消毒灯管 杀菌灯 uv灯 紫外线灯管 消毒灯 紫外线 uv 紫外灯 鱼缸杀菌灯 消毒灯 紫外灯管 uv光氧灯管 杀菌灯水族杀菌灯
最佳回答:
uv就是紫外线..这就是噱头,只不过用高能紫外线使废物分解,原理相同
最佳回答:
水的消毒方法可分化学的和物理的两种。
物理消毒方法有加热法、紫外线法、超声波等法。
化学方法有加氯法、臭氧法、重金属离子法以及其他氧化剂法等。
其中以加氯法使用最为普遍,因为氯的消毒能力强,价格便宜,设备简单,余氯测定方便;便于加量调节等优点而得到广泛应用。
加氯法,除使用氯气之外,还有氯的化合物,如次氯酸钠、次氯酸钙、氯胺类以最近国外在自来水厂中广为应用的二氧化氯–这是一种比氯的氧化性能更为强烈的氧化剂。消毒还可以用非氧化型杀生物剂,如氯酚类消毒剂和季铵盐类化合物。最近国外研制的二硫氰酸亚甲酯、盐酸十二烷基胍、有机溴化物等,以及国内研制成功的NL-4,SQ8等都是有效的消毒剂。此外,早期使用的还有铜盐,如硫酸铜等杀生剂,这此都属于化学方法的消毒。
其他答案1:
一、水的消毒就是用化学和物理方法杀灭水中的病原体,以防止疾病传染,维护人群健康。物理消毒法有加热法、γ辐射法和紫外线照射法等;化学消毒法有投加重金属离子(如银和铜)、投加碱或酸、投加表面活性化学剂、投加氧化剂(氯及其化合物、溴、碘、臭氧)等的消毒法。在这些方法中以氧化剂消毒应用最广,其中以氯及其化合物消毒尤为通用,其次是臭氧消毒。紫外线照射法和投加溴、碘及其化合物的方法用于小规模水厂或特殊设施(如游泳池)用水的消毒。
二、物理消毒介绍
紫外线消毒的生物学原理
a.饮用水紫外线消毒技术应用分析 氯消毒会产生具有致癌作用的氯化消毒副产物,而近些年来贾第虫和隐孢子虫的发现,使现有的氯消毒工艺面临严峻的挑战,人们开始寻找新的替代消毒技术有效地提高消毒效果,并且可以降低消毒过程中产生的副产物对人体健康的潜在危害,同时保证饮用水的微生物学安全性和化学安全性。在众多的替代消毒技术中,由于紫外线消毒不添加任何化学物质、消毒效果好及不产生消毒副产物等优点而引起人们的重视。紫外线消毒的历史非常悠久,在欧洲,饮用水紫外线消毒已有近百年的历史。
1910年,法国的马赛一家自来水厂最先安装了一套紫外线消毒系统对饮用水进行消毒,到目前为止,西方发达国家已在污水处理厂安装了近4000套大型紫外线消毒系统,应用该技术的厂家约占污水处理厂总数的10%。同时,至2001年底已有2000多家自来水厂采用了紫外消毒技术,占自来水厂总数的10%以上,并且大量的紫外消毒技术改造工程正在进行之中。由于紫外线消毒在环保及人身安全方面的突出优点,欧洲及北美的许多国家将紫外线消毒列为用水终端和用户进水端及小型给水系统中的首选方法。尤其是发现自来水中存在隐孢子虫后,美国已经将紫外消毒工艺作为自来水消毒的最佳手段写入供水法规中。
紫外线位于X射线和可见光之间,在物理学上一般将紫外线分为真空紫外线区(<190nm)、远紫外区(190-300nm)和近紫外区(300-400nm);按其生物学作用的差异,紫外线可分为UV-A(320-400nm)、UV-B(275-320nm)、UV-C(200-275nm)和真空紫外线部分。水处理中实际上是使用紫外线的UV-C部分,在该波段中260nm 附近已被证实是杀菌效率最高的紫外线。紫外线灭菌的原理是基于核酸对紫外线的吸收。紫外杀菌本质上是一个光化学过程,每一粒波长253.7nm的紫外线光子具有4.9eV的能量,紫外光子必须被吸收才具有活性。
核酸是一切生命体的基本物质和生命基础,核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)两大类,其共同点是由磷酸二脂键按嘌呤与嘧啶碱基配对的原则而连接起来的多核苷酸链。当微生物体受到紫外线照射时,会吸收紫外线的能量,从而引起DNA的损伤,最常见的两种损伤形式为环丁烷嘧啶二聚体(cyclobutane pyrimidine dimmer,CPD)和嘧啶-嘧啶酮光产物(pyrimidine pyrimidone photoproducts, PP)。当DNA受到紫外线照射后,相邻的嘧啶碱基共价交联形成环丁烷四圆环,使两个碱基的5、6位双键饱和,形成CPD。嘧啶-嘧啶酮光产物是通过5嘧啶的5和6位碳原子或3嘧啶的4位碳原子和位于4位碳的氧原子或亚氨基异构体间形成的二氧乙烷或氮杂丁烷4圆环而形成的,这些都是比较稳定的化学键,从而阻止了DNA的复制;另一方面,在紫外线的照射下可以产生自由基引起光电离,造成微生物不能复制繁殖,就会自然死亡或被人体免疫系统消灭,不会对人体造成危害,从而达到消毒的目的。
b.紫外线消毒对水中微生物的灭活效果紫外线消毒具有较高的微生物灭活效果,对水中多种微生物都具有良好的灭活效果,并且杀菌速度快,大多数都是在1秒之内。另外,紫外线消毒技术对近些年发现的致病性病原微生物贾第虫和隐孢子虫也具有良好的灭活效果。隐孢子虫孢囊通过人畜的粪便排入环境,它们可在环境中存活很长时间,隐孢子虫卵囊和贾孢子虫孢囊比其它水传染病源微生物的存活时间长,因而可引起多次疾病的爆发。隐孢子虫引起的疾病非常严重,其普遍的的症状是腹泻、呕吐、低烧,类似流感的症状,而对免疫机能不健全的患者,如艾滋病患者,其疾病更为严重,导致死亡。
如1994年美国拉斯维加斯市爆发隐孢子虫病,20名艾滋病患者死亡。近年来的研究表明,使用低压汞灯和中压汞灯的辐射剂量在30J/m2时,能灭活隐孢子虫99.9 %以上,并且通过大量的实验证明低压汞灯和中压汞灯均能有效地灭活隐孢子虫。紫外线消毒对军团菌也有良好的效果,Muraca比较了臭氧、紫外线和氯和加热对军团菌的灭活情况,紫外线和加热(60度)1个小时产生了5log的灭活,氯和臭氧需5个小时才能达到同样的灭活效果。
c.紫外线消毒与其它消毒方法的比较五种常用的消毒方法在消毒效果、费用及安全性方面的比较。从表中可以看出,几种中化学消毒剂灭活微生物需要较长的时间,而紫外线消毒仅需几秒钟即可达到同样的灭活效果。化学消毒剂都会产生一些对人体健康有害的消毒副产物,并且操作及管理也比较复杂,紫外线消毒在灭菌的过程中不产生消毒副产物,而且运行操作简便,其基建投资及运行费用也低于其他几种化学消毒方法。
d. 紫外线消毒应用的优缺点紫外线消毒工艺具有其他消毒工艺所无法比拟的优势,克服了现有传统消毒技术的缺点。欧洲许多国家以及北美的加拿大和美国已在九十年代分别修改了环境立法,在废水处理后的消毒,以及饮用水的消毒上,推荐采用紫外线消毒技术。
紫外线消毒的优势
(1) 紫外线消毒技术具有较高的杀菌效率,运行安全可靠。紫外线消毒对细菌和病毒等具有较高的灭活效率并且由于不投加任何化学药剂,因此它不会对水体和周围环境产生二次污染。
(2) 对隐孢子虫和贾第虫有特效消毒效果,常规的氯消毒工艺对隐孢子虫和贾第虫的灭活效果很低,并且在较高的氯投量下会产生大量的消毒副产物,而紫外线消毒在较低的紫外线剂量下对隐孢子虫和贾第虫就可以达到较高的灭活效果。
(3) 不产生有毒有害副产物,不增加饮用水的AOC含量。紫外线消毒不改变有机物的特性,并且由于不投加化学药剂,不会产生对人体有害的副产物,并且不会增加AOC和BDOC等损害管网水生物稳定性的副产物。
(4) 能降低臭味和降解微量有机物,紫外线对水中多种微量有机物具有一定的降解能力,并且能够降低水的臭和味。
(5) 占地面积小,运行维护简单、费用低。对每天5万吨污水用氯消毒来说,需建有一个130米长、3米宽的接触渠。采用紫外线消毒只需20米长3米宽的面积;紫外线消毒运行维护简单,运行成本低,可达每吨水仅4厘人民币甚至更低,其性能价格比具有很大优势。(6) 消毒效果受水温、pH影响小。
紫外线消毒技术在工程应用中缺点
主要有以下几个方面:
(1) 无持续杀菌能力,消毒后的水如果遇到新的污染源,会再次被污染,需与氯配合使用;(2) 浊度及水中悬浮物对紫外杀菌有较大影响,降低消毒效果;
(3) 紫外灯套管容易结垢,影响紫外光的透出和杀菌效果,因此需要对套管进行定期的清洗以及采取表面降温措施来防止管垢的形成;
(4) 细菌的复活现象,一些细菌被紫外照射失活的病毒细菌可通过光的协助修复自身被破坏的组织,达到复活目的,另外一些细菌可能存在着暗复活现象(无需光照);
(5) 国内使用经验少,在国内,虽然工程上已经逐渐开始使用紫外线系统,但是对于紫外线消毒技术的研究并没有完全开展起来,对于紫外线消毒的应用也还存在较多问题。
紫外线消毒技术应用前景
紫外线消毒具有广谱性,对多种病源微生物都有较好的作用效果。欧洲许多国家以及北美的加拿大和美国已在九十年代分别修改了环境立法,在废水处理后的消毒以及饮用水的消毒上,都推荐采用紫外线消毒技术。目前紫外线在饮用水消毒、再生回用水消毒、生活污水、工业废水等的消毒处理中得到了一定的应用,尽管紫外线消毒技术存在无持久杀菌能力、细菌光修复问题及灯管的使用寿命等问题,但是相信随着人们对紫外线消毒技术研究的不断深入,杀菌效率更高的中压灯、脉冲灯的出现,灯管使用寿命的延长,以及对紫外线消毒系统设计研究的深入,紫外线消毒装置产品的商业化、国产化,绿色环保高效的紫外线消毒技术在我国饮用水消毒中将具有良好的应用前景。总之,各种消毒剂均有其自身的优、缺点,应根据原水、水厂特点有针对性地加以应用
三、化学消毒介绍
饮用水中常见的消毒工艺包括液氯、氯胺、二氧化氯、臭氧、紫外线和膜消毒等.分析了各种消毒工艺的机理、运行特点和对各种病原微生物的处理效率.饮用水深度净化工艺能够很好地去除水中消毒副产物前驱物质及病原微生物,提出以氯胺或二氧化氯作为最终的消毒剂,而臭氧氧化可以作为预处理的处理方案.分析了紫外线消毒技术的应用范围.
其他答案2:
水的消毒方法可分化学的和物理的两种。物理消毒方法有加热法、紫外线法、超声波等法。化学方法有加氯法、臭氧法、重金属离子法以及其他氧化剂法等。其中以加氯法使用最为普遍,因为氯的消毒能力强,价格便宜,设备简单,余氯测定方便;便于加量调节等优点而得到广泛应用。
加氯法,除使用氯气之外,还有氯的化合物,如次氯酸钠、次氯酸钙、氯胺类以最近国外在自来水厂中广为应用的二氧化氯–这是一种比氯的氧化性能更为
强烈的氧化剂。消毒还可以用非氧化型杀生物剂,如氯酚类消毒剂和季铵盐类化合物。最近国外研制的二硫氰酸亚甲酯、盐酸十二烷基胍、有机溴化物等,以及国内
研制成功的NL-4,SQ8等都是有效的消毒剂。此外,早期使用的还有铜盐,如硫酸铜等杀生剂,这此都属于化学方法的消毒。
有污水需要处理的单位,如需了解完整污水处理方案或报价,可以通过污水宝发布方案报价海选公告;全国几千家环保公司供您选择,污水宝资深工程师团队帮您寻找最省钱的污水处理方案,货比三家花最少的钱将污水处理达标。
最佳回答:
UV紫外线光解和等离子技术是现今应用于有机废气降解最常用的两种方法。采用这两种办法,都能将废气中的有机成份,分解为无害的水及二氧化碳,并预防了二次污染。但这两种方法,仍各有优缺点。
UV光解是利用特殊的低压紫外灯管能同时发射出185nm紫外线和254nm紫外线的双光谱特性。灯管发射出的185nm紫外线,能触发空气中的O2(氧),转化为O3(臭氧)。臭氧具有很强的氧化能力,其与废气中的碳氢化合物(如苯类、烃类、醇类、脂类等)充分混合接触后,在灯管发射出的254nm紫外线的照射催化条件下,能将这些有害污染物,直接氧化分解为水和二氧化碳。由此可见,紫外灯管发射出的185nm紫外线,起到了提供氧化反应物的作用;而灯管发射出的254nm紫外线,起到了提供光解反应顺利进行的必要反应条件的作用。但紫外灯管的臭氧产生能力较低,如现在使用最为普遍的150W U形臭氧紫外线灯管,在氧气充足的条件下,每小时的臭氧产生量约为900mg左右,即其单位功率每小时的臭氧产生量仅为6mg/w。而臭氧作为光解反应中的一种主要的反应物质,其产生量的多少,直接影响着处理效果的好坏。
等离子技术,是利用高压的电场,使空气中的O2电离产生O3,其臭氧产生效率要比紫外灯管高很多。如佛山君睿光电公司生产的60W石英真空等离子管,其每小时的臭氧产生量约为6000mg左右,即其单位功率每小时的臭氧产生量为100mg/w,是紫外灯管单位功率臭氧产生量的16倍。 但等离子管几乎不发射出紫外线。缺少了紫外线的催化作用,在单纯采用等离子工艺的废气处理装置中,臭氧与有机废气的反应变得缓慢困难,同样制约了设备的处理效能。
因此,我们尝试将这两种处理方案结合起来。将等离子装置布置在光解设备的前段,离子装置产生的O3与有机废气混合后,流经紫外线灯管。紫外线灯管能进一步地触发O3的生成,同时在灯管254nm紫外线的催化作用下,O3与有机物的反应效能大幅提升,从而取得理想的处理效果。由于等离子装置较紫外灯管高得多的臭氧产生效能,使得设备的功耗随之降低,节能效果显著。
现有等离子技术常见的有非真空型及真空型两类。
非真空型等离子发生器主要为板式和蜂窝式两种,它们所需的工作电压很高,约1.5~1.8万伏,因而对系统的绝缘要求很高。且工作过程中产生的电弧较大,且直接暴露在空气中,当应用于含有易燃性气体的废气处理工艺中时,存在很大的火灾隐患。
而现有的真空型等离子管都是使用软料玻璃制作,其优点是:1、所需的工作电压大幅降低,约为2-3千伏,因而对系统的绝缘要求大幅降低,由高压电火花引燃易燃气体的可能性也随之降低;2、所产生的电弧绝大部分被封闭于真空管内,更使得引起火灾的可能性大幅下降。但其缺点是软料玻璃在工作环境温度变化较大的条件下,很容易产生裂纹,而使管内的真空条件遭到破坏,使其无法继续工作。其稳定性能很差,寿命短,限制了它在生产中的实际应用。
佛山市君睿光电科技公司新研制的石英真空等离子管(专利号:ZL213715339029.4),以石英作为管壁材料,除具备现在普通玻璃真空型等离子管的优点外,因其石英管壁具有极强的抗温度变化而不破裂的性能,并采用不锈钢网代替原来的铝网,使得这种新型的等离子管能耐受更严酷的工作环境,延长了其使用寿命,保证了工作的稳定性。同时由于管壁不易破裂,也消除了由于管壁破裂,电弧外泄而形成的火灾隐患,使用更加安全。专门设计配套的等离子电源,也使得离子管的性能得到提升,臭氧产生率有了可靠的保障。
新设计的管头使用硅胶材料制作,较现玻璃等离子管经常采用的塑料管头,具有更好的耐腐蚀性能。管头上的法兰结构设计,使得安装也更为方便。
新的石英等离子管的密封,使用工字形夹封结构,而不是现今软料玻璃工艺中采用的环封结构,使得结构更加坚固,不易破碎。
离子管的长度被设计为81CM,与150W的U形光解灯管等长,因而可被方便地设计安装到现有的光解设备中。
我们一般建议可将原光解设备中紫外灯管数量的15%-20%,以一只60W石英真空等离子管替代2只150W臭氧紫外线灯管的比例进行替换。如原使用100只150W臭氧灯管的光解系统,我们建议可将其中的20只臭氧灯管,以10只60W等离子管替代。这样系统的总功率将由原来的约18000W(灯管功率150W+镇流器功耗30W),降为15060W(离子管功率60W+电源功耗6W),而系统的臭氧产生量却将由原来的90000mg/h,提升为132000mg/h。这样系统的能耗将降低约20%,而臭氧产生量反提升约45%。可见既提升了处理的效果,又能节约能源,同时也降低了设备造价。
最佳回答:
光催化技术,就是在光的作用下进行的化学反应。
光化学及光催化氧化法是目前研究较多的一项高级氧化技术。
光催化氧化技术利用光激发氧化将O2、H2O2等氧化剂与光辐射相结合。所用光主要为紫外光,包括uv-H2O2、uv-O2等工艺,可以用于处理污水中CCl4、多氯联苯等难降解物质。
另外,在有紫外光的Fenton体系中,紫外光与铁离子之间存在着协同效应,使H2O2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。
扩展资料
原理
当能量高于半导体禁带宽度的光子照射半导体时,半导体的价带电子发生带间跃迁,从价带跃迁到导带,从而产生带正电荷的光致空穴和带负电荷的光生电子。光致空穴的强氧化能力和光生电子的还原能力导致半导体光催化剂引发一系列光催化反应的发生。
半导体光催化氧化的羟基自由基反应机理,得到大多数学者的认同。
发展史
1972 年,Fujishima和 Honda在n—型半导体TiO2电极上发现了光催化裂解水反应,在Nature上发表了“Electrochemical photolysis of water at a semiconductor electrode”,揭开了多相光催化新时代的序幕。
进入了90 年代,随着纳米技术的兴起和光催化技术在环境保护、卫生保健、有机合成等方面应用研究的发展迅速,纳米量级的光催化剂的研究,已经成为国际上最活跃的研究领域之一。
参考资料:百度百科-光催化氧化技术
其他答案1:
在波长范围170nm-184.9nm(704 kj/mol – 647 kj/mol)高能紫外线的作用下,一方面空气中的氧气被裂解,然后组合产生臭氧(见反应①、②);另一方面将恶臭气体的化学键断裂,使之形成游离态的原子或基团(见反应③);同时产生的臭氧参与到反应过程中,使恶臭气体最终被裂解、氧化生成简单的稳定的化合物,如CO2、H2O、SO2、N2等,友健科技自主研发UV光解技术
其他答案2:
运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有极强的清除效果。
其他答案3:
技术原理:
1.特定波段(253.7nm)的紫外线对恶臭气体的分子链进行分解,将其大分子结构打碎变成小分子结构。
2.特定波段(185nm)波段的紫外线使空气中的氧分子产生游离态的氧,即活性氧。因游离氧所携正负电子不平衡,所以需与氧分子结合,进而产生臭氧。
3.在催化剂(TiO2)的作用下,臭氧将打碎的恶臭气体分子氧化成CO2和H2O等无机物。
其他答案4:
技术原理:
1.特定波段(253.7nm)的紫外线对恶臭气体的分子链进行分解,将其大分子结构打碎变成小分子结构。
2.特定波段(185nm)波段的紫外线使空气中的氧分子产生游离态的氧,即活性氧。因游离氧所携正负电子不平衡,所以需与氧分子结合,进而产生臭氧。
3.在催化剂(TiO2)的作用下,臭氧将打碎的恶臭气体分子氧化成CO2和H2O等无机物。
处理气体的种类:
氨气、硫化氢、三氯化碳、己辛烷、丙酮、甲醇、甲基乙基酮、叔丁基甲基醚、二甲氧基甲烷、二氯甲烷、三氯甲烷、甲基异丙基酮、异丙醇、四氯乙烯、三甲胺、甲硫氢、甲硫醇、甲硫醚、苯乙烯、二甲二硫、二硫化碳、硫化物、苯、甲苯、二甲苯等
最佳回答:
-
臭氧由于其强氧化性,呈现出突出的杀菌、消毒、降解农药的作用,是一种高效广谱杀菌剂。
-
紫外线可以杀灭各种微生物,包括细菌繁殖体、芽胞、分支杆菌、病毒、真菌、立克次体和支原体等,具有广谱性。
-
高温消毒一般采用加热至120℃左右,保持10~15min,使包括细菌、病毒在内的微生物机体蛋白质组织变性而达到杀灭细菌、病毒的目的。
最佳回答:
在水处理设备中原水在经过处理过后,如果是要达到饮用水
标准的话,那么肯定是会用到杀菌消毒的,目前在水处理这个行业用得最多的就是紫外线杀菌和臭氧杀菌,这两者一个是使用紫外线灯管进行杀菌,一个是在水中用臭氧,这两者在本质上没有多大的区别都是杀菌消毒,但是那种效果更好呢?对于这个技术性的问题,下面就对这两者产品技术问题进行分析。 食品工业用水处理过程中的臭氧
所使用的水水质必须符合饮用水标准。有的必须在水质极限浓度标准备范转之内,甚至,根据用途的要求需达到无菌纯水,由于食品工业最终成品的种类和工厂的规模不同,情况也是各种各样的。如果不考虑整个操作过程的经济性和维护和管理问题,那么,在最终阶段采用0.22um或0.45um的薄膜过滤器(MF),有可能达到切实灭菌。
臭氧是强氧化剂。臭氧处理法是利用臭氧分解时,生成的新生态氧的氧化作用和分解能力。 无机物的氧化 A 金属离子的去除:除铁、除锰、有机金属化合物的分解;有害物质的去除:氰、NOx、SOx;亚硝酸等的氧化分解。有机物的改变 A 脱色;B 减少臭味;C 支除有机物的预处理;提高活性炭的吸咐性;D生物去除:杀菌,病例毒的非活化;E 淤泥的去除,F 有机物合成,维生素的制造;一般药品的制造有机物的完全氧化。
水的紫外线照射灭菌法不是在水中新加入任何不纯物,也不是使被处理的水发生任何化学变化,而是在极短的时间内存其设备之内完成灭菌过程。因此,紫外线杀菌方法大多适用于清洁的生产用水灭菌。在仪器工厂用水的微生物控制方面,与制品的质量恶化、腐败有关的菌种有芽孢菌属的一般细菌,野生酵母类、丝状菌类等。
臭氧处理法,除了灭菌作用以外,还有脱色、去臭,使难分解的物质变成容易分解的物质,絮凝作用的改善和提高净化能力等。因此,在工厂用水和处理方面,臭氧的应用范围很广,既可以用于处理原水系,生产用水,也可以处理排水,,但是,作为生产用水使用的来菌手段,,臭氧处理法的复合作用,在有的场合也并不受欢迎。 二 臭氧灭菌法
1 臭氧的灭菌机制和灭菌特性:臭氧分解生成氧和新生态氧。此种新生态氧作用于细菌和病毒等的细胞壁和细胞膜,反应在脂质(类脂化事合物)的双键。在进行这一作用时,细胞膜被破坏,而且SH酵素被破坏,从而达到灭菌的效果。对于芽孢杆(Bacillus)菌细菌孢子,用浓度0.3-0.5mg/l的臭氧灭菌剂即可达到灭菌效果。乳酸菌对臭氧的抵抗力很弱。据报告,初始菌数2.3-5.6×109/ml,经臭氧处理30秒种,细菌大多数死去。 按饮用水标准进行的臭氧灭菌法,接触反应时间性为5-8分种,臭氧发生器出口处的臭氧浓度为0.4mg/l以上(注入率为2-3mg/l),大多数实例以上述条件为运行管理目标。如果在同样的系统内,将臭氧的注入率增加至5mg/l,根据实验结果,经过此种处理的水,一般来说,细菌是不能存活的。
臭氧的杀菌效果,因微生物种类的不同而有很大差异,这是由于的细胞壁或细胞膜的差异迁成的。用臭氧处理芽杆菌属的细菌孢子和酵母,需要较长时间,但是,若增加臭氧浓度可使反应时间适当的缩短。在实际使用过程中,可根据菌种确定臭氧的浓度和选定接触反应时间。
2 水的臭氧灭菌方法,不仅是一个灭菌装置,而应视为一个灭菌系统。为了建立这样一个系统,须注意事项。
A 臭氧原料的精制:除了借助荧光灯制造臭氧或冷藏库使用的小型臭氧机外,对于工业规模臭氧发生机,作为臭氧原料的空气精制除理,除尘、 除湿是非常重要的,一般来说:用无声放电臭氧发生机产生臭氧的浓度, 以空气为原料时为1-3%,以氧为原料时,为2-6%,如果这个精制处理过程不充分,那么,有仅臭氧的生产效率低,而且原料中的不纯物原封不动地、一部分以氮的氧化物形式进入臭氧处理水理系统。
B 选用具有稳定的臭氧生产能力的臭氧发生机那座建议采用臭氧发生器。近年来,臭氧发生机的开发研制和技术水平显著提高。市场上出售的臭氧发生器,各种类型都有,如无声放电式玻璃管式,同极板式,陶瓷表面放电式等,三菱电机,住友精密,富士电机等一流的制造厂商的制品,其性能达到了国际先进水平。从15G/H的小型机到40KG/H的大型机,均可于供臭氧原料的PSA制氧机配套,形成系列化产品。最近加入制造商行列的大手机械制造公司,推出了便携式臭氧机。
用于食品制造的生产用水的臭氧杀菌方法,最好采用纯氧或PSA氧浓缩器来供给臭氧原料。
C 水和臭氧的接触反应时间:臭氧注入量和接触反应时间,要根据作为杀菌对象的微生物的种类及目标灭菌率而定。可能是由于建造费用的关系,
D臭氧浓度的管理:为了使臭氧灭菌过程可靠的进行,监测臭氧注入浓度和臭氧溶解度是很重要的,要将他们控制在一个合适的范围内。现在,除了高精度的连续式臭氧浓度测定器,价格低廉的手提式测定器也已研制出来,所以定期进行臭氧浓度测试,并采取补救措施也是必要的。在水的灭菌过程中,不可避免地要将臭氧排到系统之外,所以必须进行除害处理,使排出的臭氧量在允许浓度之下。 三 紫外线照射杀菌法 1 紫外线杀菌机理和处理特性 波长200-290mm的紫外线,可透过细菌或病毒的细胞膜对控制着遗传现象和生物机能核酸(DNA)造成损伤,使它失支繁殖能力,从而达到杀菌的目地。
各种微生物对紫外线的敏感程度,因菌种的不同而有差异。根据以芽孢杆菌属(Bacillus)为对象(含B.subtlis)进行的工厂试验结果表明,在照射量D10=mw.s/cm2时,杀菌率达到99.5%。为此,实际装置的设计照射量相当于D10×4,即50mw.s/cm2以上。
核酸(DNA)对于波长250-260mm的紫外线,有特别容易吸收的倾向。这就是为什么这种波长的紫外线杀菌能力最强的缘故。按照要杀灭的微生物所需的紫外线照射量进行来菌处理,而又不使水质发生任何变化,在极短时间内进行一闪性灭菌,效果良好。而且,这种处理是在直管流通型的装置内完成的。
在紫外线杀菌方面,杀菌力的大小以相对于处理水时的紫外线照射量mw.s/cm2(紫外线照射强度[mw/cm2×时间])来表示。紫外线照射击量的大小与杀菌率的大小有相关关系。
其他答案1:
你好,臭氧能破环分解细菌的细胞壁,迅速进入细胞内氧化酶系统,或破环细胞膜和组织结构中的蛋白质和核糖核酸,导致细胞死亡。紫外线是一种物理消毒方法,外线光子能量能够破环各种病毒、细菌以及致病微生物的遗传系统结构,经紫外线照射微生物DNA结构建断裂和发生光学聚合反应,DNA失去复制繁殖能力,进而达到消毒霉菌的目的。
最佳回答:
等离子灭菌除臭技术原理等离子体具有较高的热动能,与空气中的分子碰撞会发生一系列物化反应并产生多种活性自由基和生态氧。活性自由基能在瞬间高速击穿、蚀刻.氧化微生物的蛋白质和核酸。
uv光解原理:
一、恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。
四、利用高能UV光束裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀灭细菌的目的.
二、本产品利用特制的高能高臭氧UV光束照射恶臭气体,裂解恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子键,使呈游离状态的单分子被臭氧氧化结合成小分子无害或低害的化合物,如CO2、H2O等。
三、利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧不稳定需与氧分子结合,进而产生臭氧。UV+O2→O-+O*(活性氧) O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有立竿见影的清除效果。
最佳回答:
UV光解(也就是高能光氧)是利用UV灯照射氧气 氧气变成臭氧 利用臭氧的强氧化性去分解废气分子。都是一样的 只不过高能光氧名字好听点而已–来自万川环保
其他答案1:
貌似是一种技术原理,只是说法不一样。uv光氧催化废气处理设备利用特定波长的高能紫外线光束迅速分解空气中的氧分子和水分子,使得有机气体彻底分解为CO2和H2O,同时紫外光具有的强大的能量对挥发性有机气体进行协同分解氧化反应.将大分子有机气体链结构断裂.使有机气体物质转化为低分子化合物或者完全氧化,生成H2O和CO2。
正蓝环保技术资料
其他答案2:
本产品采用高能高臭氧UV紫外线光束、氧化反应催化剂、高能离子发生装置的组合工艺来降解有机废气,改变恶臭、刺激型气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类、苯、甲苯、二甲苯的分子链结构,使有机或无机高分子恶臭化合物分子链,通过高能紫外线光束照射、催化剂的氧化反应、正氧离子的氧化反应,降解转变成低分子化合物,如CO2、H2O等。
一、工艺原理如下:
1
、利用高能高臭氧紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对有机气体及其它刺激性异味有立竿见影的清除效果。有机性气体利用排风设备输入到本净化设备后,运用高能紫外线光束及臭氧对有机(异味)气体进行协同分解氧化反应,使有机气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。
2
、高能离子空气净化系采用正负双极电离技术。在电场作用下,离子发生器产生大量的 a 粒子, a 粒子与空气中的氧分子进行碰撞而形成正负氧离子。正氧离子具有很强的氧化性,能在极短的时间内氧化分解甲硫醇、氨、硫化氢等污染因子,且在与 VOC 分子相接触后打开有机挥发性气体的化学键,经过一系列的反应后最终生成二氧化碳和水等稳定无害的小分子。同时氧离子能破坏空气中细菌的生存环境,降低室内细菌浓度。带电离子可以吸附大于自身重量几十倍的悬浮颗粒,靠自重沉降下来,从而清除空气中悬浮胶体达到净化空气的目的
2
、催化剂(二氧化钛)在受到紫外线光照射时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机物的作用。二氧化钛属于非溶出型材料,在彻底分解有机污染物和杀灭菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。
二、 产品性能综述
一、高效降解有机化学物:能高效去除挥发性有机物(VOC)、无机物、硫化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,脱臭效率可达99.9%以上,脱臭效果大大超过国家1993年颁布的恶臭污染物排放标准(GB14554-93).
二、无需添加任何物质:只需要设置相应的排风管道和排风动力,使气体通过本设备进行脱臭分解净化,无需添加任何物质参与化学反应。
三、适应性强:可适应高浓度,大气量,不同有机化学气体物质的净化处理,可每天24小时连续工作,运行稳定可靠。
四、运行成本低:本设备无任何机械动作,无噪音,无需专人管理和日常维护,只需作定期检查,本设备能耗低,(每处理1000立方米/小时,仅耗电约0.1度电能),设备风阻极低<30pa,可节约大量排风动力能耗。
五、无需预处理:废气无需进行特殊的预处理,如加温、加湿等,设备工作环境温度在摄氏-30o-95o之间,湿度在40%-98%之间均可正常工作。
六、设备占地面积小,自重轻:适合于布置紧凑、场地狭小等特殊条件。
三、
适用范围
炼油厂、橡胶厂、化工厂、家具厂、制药厂、污水处理厂、垃圾转运站等恶臭气体的脱臭净化处理。
处理浓度:100-1000(mg/L)
适用领域:喷漆,印刷,涂料等行业 处理风量:500-50000(m3/h)
种类:有机废气处理成套设备 加工定制:是
HXY 系列光氧催化有机废气净化(除臭)净化设备产品介绍
产品技术原理
一、本产品利用特制的高能高臭氧UV紫外线光束照射恶臭气体,改变恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子链结构,使有机或无机高分子恶臭化合物分子链,在高能紫外线光束照射下,降解转变成低分子化合物,如CO2、H2O等。
二、利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有立竿见影的清除效果。
三、恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。
四、利用高能UV光束裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀灭细菌的目的.
产品性能综述
一、高效除恶臭:能高效去除挥发性有机物(VOC)、无机物、硫化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,脱臭效率可达99.9%以上,脱臭效果大大超过国家1993年颁布的恶臭污染物排放标准(GB14554-93).
二、无需添加任何物质:只需要设置相应的排风管道和排风动力,使恶臭气体通过本设备进行脱臭分解净化,无需添加任何物质参与化学反应。,
三、适应性强:可适应高浓度,大气量,不同恶臭气体物质的脱臭净化处理,可每天24小时连续工作,运行稳定可靠。
四、运行成本低:本设备无任何机械动作,无噪音,无需专人管理和日常维护,只需作定期检查,本设备能耗低,(每处理1000立方米/小时,仅耗电约0.1度电能),设备风阻极低<30pa,可节约大量排风动力能耗。
五、无需预处理:恶臭气体无需进行特殊的预处理,如加温、加湿等,设备工作环境温度在摄氏-30o-95o之间,湿度在40%-98%之间均可正常工作。
六、设备占地面积小,自重轻:适合于布置紧凑、场地狭小等特殊条件,设备占地面积<1平方米/处理10000m3/h风量。
七、优质进口材料制造:防火、防腐蚀性能高,性能稳定,使用寿命长。
附加工艺一说明、高能离子空气净化系采用正负双极电离技术。在电场作用下,离子发生器产生大量的 a 粒子, a 粒子与空气中的氧分子进行碰撞而形成正负氧离子。正氧离子具有很强的氧化性,能在极短的时间内氧化分解甲硫醇、氨、硫化氢等污染因子,且在与 VOC 分子相接触后打开有机挥发性气体的化学键,经过一系列的反应后最终生成二氧化碳和水等稳定无害的小分子。同时氧离子能破坏空气中细菌的生存环境,降低室内细菌浓度。带电离子可以吸附大于自身重量几十倍的悬浮颗粒,靠自重沉降下来,从而清除空气中悬浮胶体达到净化空气的目的
附加工艺二说明、催化剂(二氧化钛)在受到紫外线光照射时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机物的作用。二氧化钛属于非溶出型材料,在彻底分解有机污染物和杀灭菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。
适用范围:
炼油厂、橡胶厂、化工厂、制药厂、污水处理厂、垃圾转运站等恶臭气体的脱臭净化处理。帝龙科技主要经Mr.冯先生13715339029
最佳回答:
技术原理:
1.特定波段(253.7nm)的紫外线对恶臭气体的分子链进行分解,将其大分子结构打碎变成小分子结构。
2.特定波段(185nm)波段的紫外线使空气中的氧分子产生游离态的氧,即活性氧。因游离氧所携正负电子不平衡,所以需与氧分子结合,进而产生臭氧。
3.在催化剂(TiO2)的作用下,臭氧将打碎的恶臭气体分子氧化成CO2和H2O等无机物。
处理气体的种类:
氨气、硫化氢、三氯化碳、己辛烷、丙酮、甲醇、甲基乙基酮、叔丁基甲基醚、二甲氧基甲烷、二氯甲烷、三氯甲烷、甲基异丙基酮、异丙醇、四氯乙烯、三甲胺、甲硫氢、甲硫醇、甲硫醚、苯乙烯、二甲二硫、二硫化碳、硫化物、苯、甲苯、二甲苯等
Leave A Comment