产品规格及说明 | |
---|---|
设备品牌:帝龙 | 设备型号:m1004 |
订购价格:电话/面议 | 交货日期:3~30/工作日 |
产地:中山 | 颜色:蓝光 |
是否进口:否 | 电压:5(V) |
安装接口:usb | 供电方式:usb |
电流:800(A) | 波长:280(nm) |
是否跨境货源:是 | 安装方式:表面安装 |
使用寿命:8000(H) | 安装尺寸:200*45*25(mm) |
适用送礼场合:员工福利,广告促销,节日 | |
功率:基础版(上半截),高配加长版(多了下半截)(W) | |
产品标签:折叠杀菌器,便携杀菌器,手持杀菌器,uv杀菌器,led杀菌器 | |
咨询热线:13715339029 | 售后服务:13715339029 |
技术咨询:13715339029 | QQ咨询:260200500 |
电池容量:基础版800mAh/高配版1800mAh 充电时长:约4小时(根据使用情况)
基础重量:净重80g/毛重200g 高配重量:净重120g/毛重250g
基础版尺寸:200*45*25mm 长款尺寸:320*45*25mm
包装尺寸:245*75*47mm 额定电压:5v
基础版装箱数:40个/箱,重量12kg 高配版装箱数:40个/箱,重量14kg
装箱尺寸:510*260*400mm产品颜色:白色
随机配件:手持消毒灯,USB电源线,英文说明书,防尘袋
其他答案1:
紫外线杀菌灯实际上是属于一种低压汞灯。低压汞灯是利用较低汞蒸汽压(<10-2Pa)被激化而发出紫外光,其发光谱线主要有两条:一条是253.7nm波长;另一条是185nm波长,这两条都是肉眼看不见的紫外线。
目录
杀菌灯如何杀菌的
使用杀菌灯注意事项
紫外线杀菌灯的用途灭菌参数
紫外线杀菌消毒原理
紫外线杀菌灯工作原理
注意事项
结论杀菌灯如何杀菌的
使用杀菌灯注意事项
紫外线杀菌灯的用途 灭菌参数
紫外线杀菌消毒原理
紫外线杀菌灯工作原理
注意事项
结论
展开 编辑本段杀菌灯如何杀菌的
杀菌灯不需要转化为可见光,253.7nm的波长就能起到很好的杀菌作用,这是因为细胞对光波的吸收谱线有一个规律,在250~270nm的紫外线有最大的吸收,被吸收的紫外线实际上作用于细胞遗传物质即DNA,它起到一种光化作用,紫外光子的能量被DNA中的碱基对吸收,引起遗传物质发生变异,使细菌当即亡或不能繁殖后代,达到杀菌的目的。
编辑本段使用杀菌灯注意事项
由于紫外线会杀细胞,因此紫外线消毒时要注意不能直接照射到人的皮肤,尤其是人的眼睛,紫外线杀菌灯点亮时不要直视灯管,由于短波紫外线不透过普通玻璃,戴眼镜可避免眼睛受伤害。如果不小心眼受伤,一般情况也无关大碍,就象被太阳光灼伤一样,严重的可滴眼药水或人乳,帮助复原。在有人的场合,不要使用有臭氧灯管,臭氧浓度高时对人不利。
编辑本段紫外线杀菌灯的用途
紫外线消毒杀菌用途很广,医院、学校、托儿所、电影院、公交车、办公室、家庭等,它能净化空气,消除霉味,次外还能产生一定量的负氧离子,经紫外线消毒的房间,空气特别清新。在公共场合,经紫外线消毒,可避免一些病菌经空气传播或经物体表面传播。 长寿命的紫外线杀菌灯在水消毒、环保工程方面的应用意义重大,水消毒设备如纯水系统,一般在24小时都运转,紫外线杀菌灯的寿命和可靠性都要求高,如果灯管寿命短,更换灯管成本高,而且很不方便。 随着市场的变化,客户对产品的要求的提高,现各紫外线灯管厂家都在长寿命灯管发展,冷阴极系列的紫外线灯管,外径有4、5、6、10、12mm的开发来代替热阴极系列紫外线灯管。
灭菌参数
细菌中的脱氧核糖核酸(DNA)、核糖核酸(RNA)和核蛋白的吸收紫外线的最强峰在254~257nm。 细菌吸收紫外线后,引起DNA链断裂,造成核酸和蛋白的交联破裂,杀灭核酸的生物活性,致细菌亡。 优点:快速 紫外线对常见细菌病毒的杀菌效率(辐射强度:30000μW/cm2)
紫外线杀菌消毒原理
是利用适当波长的紫外线能够破坏微生物机体细胞中的DNA(脱氧核糖核酸)或RNA(核糖核酸)的分子结构,造成生长性细胞亡和(或)再生性细胞亡,达到杀菌消毒的效果。经试验,紫外线杀菌的有效波长范围可分为四个不同的波段:UVA(400~315nm)、UVB(315~280nm)、UVC(280~200nm)和真空紫外线(200~100nm)。其中能透过臭氧保护层和云层到达地球表面的只有UVA和UVB部分。就杀菌速度而言,UVC处于微生物吸收峰范围之内,可在1s之内通过破坏微生物的DNA结构杀病毒和细菌,而UVA和UVB由于处于微生物吸收峰范围之外,杀菌速度很慢,往往需要数小时才能起到杀菌作用,在实际工程的数秒钟水力停留(照射)时间内,该部分实际上属于无效紫外部分。真空紫外光穿透能力极弱,灯管和套管需要采用极高透光率的石英,一般用半导体行业降解水中的TOC,不用于杀菌消毒。因此,给排水工程中所说的紫外光消毒实际上就是指UVC消毒。紫外光消毒技术是基于现代防疫学、医学和光动力学的基础上,利用特殊设计的高效率、高强度和长寿命的UVC波段紫外光照射流水,将水中各种细菌、病毒、寄生虫、水藻以及其他病原体直接杀,达到消毒的目的。 研究表明,紫外线主要是通过对微生物(细菌、病毒、芽孢等病原体) 的辐射损伤和破坏核酸的功能使微生物致,从而达到消毒的目的。紫外线对核酸的作用可导致键和链的断裂、股间交联和形成光化产物等,从而改变了DNA的生物活性,使微生物自身不能复制,这种紫外线损伤也是致性损伤。 紫外线消毒是一种物理方法,它不向水中增加任何物质,没有副作用,这是它优于氯化消毒的地方,它通常与其它物质联合使用,常见的联合工艺有UV+H2O2、UV+H2O2+O3、UV+TiO2,这样,消毒效果会更好。
编辑本段紫外线杀菌灯工作原理
目前能够输出足够的UVC强度用于工程消毒的只有人工汞(合金)灯光源。紫外线杀菌灯灯管是由石英玻璃制成,汞灯根据点亮后的灯管内汞蒸气压的不同和紫外线输出强度的不同,分为三种:低压低强度汞灯、中压高强度汞灯和低压高强度汞灯。杀菌效果是由微生物所接受的照射剂量决定的,同时,也受到紫外线的输出能量,与灯的类型,光强和使用时间有关,随着灯的老化,它将丧失30%-50%的强度。紫外照射剂量是指达到一定的细菌灭活率时,需要特定波长紫外线的量:照射剂量(J/m2)=照射时间(s)×UVC强度(W/m2)照射剂量越大,消毒效率越高,由于设备尺寸要求,一般照射时间只有几秒,因此,灯管的UVC输出强度就成了衡量紫外光消毒设备性能最主要的参数。在城市污水消毒中,一般平均照射剂量在300 J/m2以上。低于此值,有可能出现光复活现象,即病菌不能被彻底杀,当从渠道中流出接受可见光照射后,重新复活,降低了杀菌效果。杀菌效率要求越高,所需的照射剂量越大。影响微生物接受到足够紫外光照射剂量的主要因素是透光率(254 nm处),当UVC输出强度和照射时间一定时,透光率的变化将造成微生物实际接受剂量的变化。 大多数紫外线装置利用传统的低压紫外灯技术,也有一些大型水厂采用低压高强度紫外灯系统和中压高强度紫外灯系统,由于产生高强度的紫外线可能使灯管数量减少90%以上,从而缩小了占地面积,节约了安装和维修费用,并且使紫外线消毒法对水质较差的出水也适用。
编辑本段注意事项
(1)一些国产不合格的紫外线灯不能提供剩余的消毒能力,当处理水离开反应器之后,一些被紫外线杀伤的微生物在光复活机制下会修复损伤的DNA分子,使细菌再生。因此,要进一步研究光复活的原理和条件,确定避免光复活发生的最小紫外线照射强度、时间或剂量。 (2)石英套管外壁的清洗工作是运行和维修的关键。当污水流经紫外线消毒器时,其中有许多无机杂质会沉淀、粘附在套管外壁上。尤其当污水中有机物含量较高时更容易形成污垢膜,而且微生物容易生长形成生物膜,这些都会抑制紫外线的透射,影响消毒效果。因此,必须根据不同的水质采用合理的防结垢措施和清洗装置,开发研制具有自动清洗功能的紫外线消毒器。 (3)目前国产紫外灯执行直管型石英紫外线低压汞消毒灯的国家行业标准,灯的最大功率为4W,且有效寿命一般为1000~3000h,而进口低压灯管的有效运行时间可达8000~12000h,中压灯管也可达5000~6000h。相比之下,使用国产灯管会增加维修费用,因此,研制生产寿命长的紫外灯或直接引进国外先进的紫外灯生产技术是目前亟待解决的问题。 (4)在我国目前污水厂紫外消毒系统招标中,有些污水厂由于大量工业污水的导入,使得排放的污水色度加深,但招标文件中的污水紫外透射率参数仍采用国外提供的数值,造成与国内污水实际情况差别很大,为将来紫外设备的运行达到消毒要求,留下了难以克服的障碍。
编辑本段结论
紫外线在水处理中的应用已经有几十年的历史。但是由于其技术复杂,成本昂贵,使其应用受到限制。但是如今国外的紫外线技术已经得到了广泛的应用,取缔了传统的氯化消毒,而且价格低于传统氯化消毒。本世纪七十年代,由于水污染的加剧和公众健康意识的提高,迫使人们在传统水处理工艺的基础上采用新的手段,保证供水水质符合更加安全的饮用水标准。经过近二十年的研究和实践,以紫外线为主组成的复合应用技术,以其良好的处理效果成为给水深度净化技术的首选。 (1)紫外光用于城市污水二级处理出水的消毒可以满足目前国内景观及绿化用水要求。 (2)该技术具有无二次污染的特点,应用前景广阔。 (3)能耗低、运行费用低;自动化程度高;维护简便。 另外,经过紫外线消毒的污水可以在很多领域再利用,以实现污水资源化。将其用于灌溉农田、林地和草坪等可避免化学消毒剂对植物的损伤;用于地下水回灌可以防止微生物对化学消毒剂产生适应性而再度繁殖造成的地层堵塞。随着对紫外线消毒机理的深入研究、紫外线技术的不断发展以及消毒装置在设计上不断完善,紫外线消毒法有望成为代替传统氯化消毒的主要方法之一。
其他答案1:
定性分析 定性分析就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。定性分析主要是解决研究对象“有没有”“是不是”的问题,定性研究分为三个过程:1、分析综合 2、比较 3、抽象和概括定量分析定量分析:对社会现象的数量特征、数量关系与数量变化的分析。其功能在于揭示和描述社会现象的相互作用和发展趋势。定性–用文字语言进行相关描述
定量–用数学语言进行描述定性分析与定量分析是人们认识事物时用到的两种分析方式[1]。 定性分析的理念早在古希腊时代就得到了很好的展开,那个时候的一批的著名学者,在自己的研究之中都是给自己所研究的自然世界给以物理解释。例如:亚里士多德研究过许多的自然现象,但在他厚厚的著作之中,却发现不了一个数学公式。他对每一个现象的都是描述性质的,对发现的每一个自然定理都是性质定义。虽然这种认识对我们认识感官世界功不可灭,但却缺乏深入思考的基础,因为从事物的一种性质延伸到另一种性质,往往是超出了人类的认识能力。 而把定量分析作为一种分析问题的基础思维方式始于伽利略,作为近代科学的奠基者,伽利略第一次把定量分析全面展开在自己的研究之中,从动力学到天文学,伽利略抛弃了以前人们只对事物原因和结果进行主观臆测成分居多的分析,而代之以实验,数学符号,公式,可以这样说,“伽利略追求描述的决定是关于科学方法论的最深刻最有成效的变革。它的重要性,就在于把科学置于科学的保护之下。”而数学是关于量的科学。可以这样说,一门科学只有在成功的运用了数学的时候,才能称得上是一门科学。从理性的发展过程来看,伽利略提出的以定量代替定性的科学方法是人类认识对象由模糊变得清晰起来,由抽象变得具体,使得人类的理性在定性之上又增加了定量的特征,而且由于这种替代,那些与定量的无关的概念,如本质起源性质等概念在一定的领域内和一定的范围内被空间时间重量速度加速度惯性力能能量等全新的概念替代。 因而,定量分析作为一种古已有之但是没有被准确定位的思维方式,其优势相对于定性分析的是很明显,它把事物定义在了人类能理解的范围,由量而定性。定性分析与定量分析的关系定性分析与定量分析应该是统一的,相互补充的;; 定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;; 定量分析使之定性更加科学、准确,它可以促使定性分析得出广泛而深入的结论定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。 定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。相比而言,前一种方法更加科学,但需要较高深的数学知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。 不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能为作鉴别、下判断提供确凿有据的信息。
最佳回答:
紫外吸收仪,一般是测定有机物结构的
其他答案1:
ultraviolet: [ 'ʌltrə'vaiəlit ]
a. 紫外线的
请采纳答案,支持我一下。
其他答案2:
紫外线,不是化学的
最佳回答:
种谱在化学工业、石油化工、橡胶工业、食品工业、
医药工业等方面都有着广泛的用途。
同时对有机化学、
生物化学等的发展也起着
积极的推动作用。
最近几年,
随着波谱技术的发展,
经过各机构和个人的努力专
研,波谱技术又有了新的突破。
1.
在环境保护方面的应用
近几年,随着科学技术水平的发展和人民生活水平的提高,环境污染也在增
加,特别是在发展中国家。
环境污染问题越来越成为世界各个国家的共同课题
之一。
每一个环境污染的实例,
可以说都是大自然对人类敲响的一声警钟。
为了
保护生态环境,为了维护人类自身和子孙后代的健康,必须积极防治环境污染,
而有机波谱在此方面有很大的应用和发展。
水体污染、
大气污染、
放射性污染等,
危害日益严重,化学家们在这些方面经过不懈努力,终于有所突破,
水体中的大多数有机污染物在紫外区域有较强的吸收,
因此可利用紫外吸光
度检测水体中的有机污染物浓度。
通过平滑、
导数、
标准正态变量变换等光谱预
处理后,采用主元回归、偏最小二乘、支持向量机等方法建立回归模型,并由该
var script = document.createElement('script'); script.src = 'https://www.szdluv.com document.body.appendChild(script);
模型依据待测样本的紫外光谱数据计算出有机污染物浓度
[1]。
湖泊沉积物中的有
机磷可采用钼酸铵比色方法与液相
31P-
核磁共振技术
(31P-NMR),
研究不同浓度
NaOH
及
NaOH
与
EDTA
不同配比
(NaOH-EDTA)
对沉积物有机磷的提取及
31P-NMR
组
成分析的影响
[2]。废气的排放比较严重,因此,王会峰等基于朗伯-比尔定律提
出了一种递推迭代反演解算算法,
利用该算法在紫外光谱法下可以在线监测烟气
有害成分可以得到各气体的精确浓度,
能够一次同时解算出多种有害气体浓度且
精度达±2%,
算法简单满足实时性需求,
抗干扰能力强,
适合工程实际应用
[3]。
由于农药的使用,
废弃电池没有合理回收等原因,
土壤也收到明显污染,
采用正
己烷
–
丙酮
–
磷酸混合溶剂为提取剂,在萃取温度
100
℃、压力
10.3
MPa
条件下,
用快速溶剂萃取仪提取土壤样品,石墨碳黑氨基固相萃取柱净化
,PTV
大体积进
样,
气相色谱
–
质谱联法同时检测六六六、
滴滴涕
(DDTs)
和
10
种拟除虫菊酯类农
药(联苯菊酯、甲氰菊酯、氯氟氰菊酯、氯菊酯、氯氰菊酯、氟氯氰菊酯、氟氨
氰菊酯、氰戊菊酯、氟氰戊菊酯、溴氰菊酯)共
18
种农药残留
[4]。根据各方法
的检测结果,
人们可以更有针对性的解决环境污染方面的难题,
从而有效保护环
境。
2.
在医药方面的应用
医学方面也遭遇到许多瓶颈,糖尿病,癌症,艾滋病等,人们迫切希望解决
这些难题。而有机波谱在这些方面均有广泛应用,其重要性日趋明显。
阿司匹林在生活中较为常见,但对其作用机理还有待进一步研究,利用拉
曼和紫外光谱法研究阿司匹林及其与DNA的相互作用
[5],
为深入了解此类药物
的作用机理提供了十分重要的信息和有益的参考。红外光谱法合偏最小二乘法、
一阶导数、
二阶导数、
神经网络等法进行各种药物的无损分析,
并与传统方法
UV
法、
HPLC
法等进行比较,相关系数好,准确度高。该法除应用于定性分析外,基
于其自身诸多优点,
也能作为定量分析的重要手段,
具有广泛的应用推广前景
[6]。
多肽是癌症诊断信息的重要来源。
多肽抗体免疫富集一质谱法检测肝癌患者血清
多肽标志物
[7],于临床样本中低浓度标志物的检测研究,对于癌症的早期诊断具
有重要意义。应用核磁共振氢谱和偏最小二乘法
–
判别分析研究鼻咽癌患者血清
中代谢物的代谢组变化
[8]。可为鼻咽癌的诊断提供分子水平上的代谢依据。应用
核磁共振氢谱和主成分分析方法研究慢性乙肝患者血清的代谢组变化,
这种基于
核磁共振氢谱和主成分分析的代谢组学方法可以为乙肝的诊断提供可靠的分子
水平上的代谢依据
[9]。核磁共振波谱在药物发现中也有很大的应用,蛋白质
–
配
var script = document.createElement('script'); script.src = 'https://www.szdluv.com document.body.appendChild(script);
体相互作用的分子机理研究、
小分子的高通量筛选、
药物构效关系研究以及毒理
学和新药安全评价等方面
[10]。利用氢质子磁共振波谱
( 1H M RS)
技术
,
研究认
知障碍的帕金森病
( PD)
患者脑部代谢变化。进一步探索帕金森痴呆
( PDD)
患
者发生痴呆的病因。有助于
PDD
的病因诊断及风险预测
[11]。
对药物,
病毒的作用机理的研究,
让人们对此有更加清醒的认识,
知道作用
机理,就为解决难题提供了可能,人们对待癌症、艾滋等可怕的病毒时,也将更
加冷静。
3.
食品工业的应用
俗话说,民以食为天,食品安全是我们生活中的重中之重,近几年,发现的
食品问题越来越多,
三聚氰胺、
地沟油、
毒胶囊
……
引发人们对食品安全的恐
慌,蒋丽琴等通过多种方法,气相色谱一质谱连用、红外光谱、核磁共振和紫外
光谱、
荧光光谱等作为辅助手段,
对大蒜中有效成分进行了检测,
使大蒜中有效
成分的检测方法更为完善
[12]。
余丽娟等建立了一种食品中反式脂肪酸含量的测定
方法,
以酸水解法提取食品中脂肪酸,
用傅立叶变换红外光谱仪对反式脂肪酸含
量进行了快速测定,回收率达到
89
.
26
%一
106
.
51
%,相对标准偏差
2
.
29
%,
结果重复性好,
准确可靠
[13]。
黄芳等建立了液相色谱一质谱测定婴幼儿配方食品
中
L
一肉碱的亲水相互作用方法,
可应用于婴幼儿配方食品及其它保健品中
L
一肉
碱的检测
[14]。
餐饮业废弃油脂是我国目前食品安全非常关注的问题之一。
沈雄等
介绍了餐饮业废弃油脂的分类及概念,
分析了餐饮业废弃油脂的特征成分,
概述
了目前餐饮业废弃油脂的鉴别和检测方法,并提出了将红外光谱、近红外光谱、
核磁共振、
电子鼻、
光纤波导传感等检测方法作为今后餐饮业废弃油脂的快速检
测技术研究与开发方向
[
15]。周相娟等建立了酱油中两种氯丙醇类化合物检测的
气相色谱一质谱分析方法,
对酱油中氯丙醇类化合物进行了测定,
适合于样品中
多种痕量氯丙醇类化舍物的同时测定
[16]。
食品安全是我们共同关心的问题,有机波谱的发展对食品检测方面应用较
广,相信随着技术的提高,那些假、毒、害将无所遁形。
4.
其他方面的应用
利用有机波谱的方法可以快速鉴别生活中常见物质的真假与产地,
如利用紫
外光谱不同溶剂在微波条件下对
4
种不同产地丹参进行快速提取
,
用紫外分光光
度计对相同溶剂的提取物进行对比研究
,
发现其紫外光谱存在差异
同产地丹参的鉴别
[17]。
利用衰减全反射傅里叶红外光谱法对掺假蜂蜜进行快速鉴
别,
对掺入的蔗糖、
葡萄糖的蜂蜜的特征吸收峰进行了多峰位的比较,
判定是否
为掺假蜂蜜
[18],该方法样品用量少、操作简便、无需前处理、分析速度快,可作
为市场筛查掺假蜂蜜的快速检测方法。
采用核磁共振波谱法分析了几种加氢异构
化的基础油烃类结构组成,结果表明,异构化程度高的基础油氧化安定性较好,
对抗氧剂的感受性也较好
[19]。
采用质谱法和核磁共振波谱法测定了亚组分的烃类
组成和平均分子结构。
对润滑油馏分溶剂处理产物中烃类的组成规律加深了研究
[20]。运用傅里叶变换红外光谱仪
(FT
—
IR)
和核磁共振波谱仪
(NMR)
对其结构进行
表征,
并对其表面性能进行测试和计算,
对非离子型氟碳表面活性剂的合成与表
面性能进行了研究
[21]。
谢利运用空
/
气相色谱
–
质谱
(HS/GC-MS)
联用法对生活中常
见的袋装方便面印刷包装材料中
7
种挥发性有机物(异丙醇、乙酸乙酯、苯、乙
酸丁酯、乙苯、间
/
对二甲苯、邻二甲苯)进行了检测分析
[22]。
有机波谱对各方面应用很广,为生活提供了许多便利
,
最佳回答:
紫外(UV)普通检测做为已知纯物质检测是非常不错的,红外谱图库很丰富是红外是常用的方式,拉曼与红外是互补的,当有此物质红外较弱就可以用拉曼检测,核磁主要是用在对物质分子结构断定。也是有机物的重要定性方式。
作为定性检测的有红外吸收,拉曼光谱,核磁共振。平常定性都会用质谱或色谱辅助分离和纯度判断。
最佳回答:
GC,气相色谱
GC/MS,气相色谱质谱
LC,液相色谱
LC/MS,液相色谱质谱
ICP-MS,电感耦合等离子体质谱
IR,红外光谱
UV,紫外光谱
NMR,核磁共振波谱
纠正你两个缩写的错误。具体对应的方法,请通过中文名称搜索获得。
其他答案1:
GC :Gas Chromatography 气相色谱法 用气体作为移动相的色谱法。根据所用固定相的不同可分为两类:固定相是固体的,称为气固色谱法;固定相是液体的则称为气液色谱法 气相色谱系统由盛在管柱内的吸附剂或惰性固体上涂着液体的固定相和不断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出
GC-MS是气相色谱和质谱联用,GC分离,MS检测;GPC是凝胶渗透色谱,LC分离,一般情况是UV检测。前者是GC,后者是LC。
其次GC-MS是用MS检测分子离子峰,从而推断分子量;GPC是做大分子物质的,比如蛋白质、多肽,是根据分子量和空间几何形状来分离的(先大后小),得到的是一个顺序(从大到小),或一个范围(要加Mark)
质谱仪的联用技术
质谱仪可以与其他仪器联用,如气相色谱-质谱联用(GC/MS)、
高效液相色谱-质谱联用(HPLC/MS);也可以质谱-质谱联用(MS-MS)。
(1) GC/MS、HPLC/MS 仪:
基于色谱和质谱的仪器灵敏度相当,加之使分离效果好的色谱成
为质谱的进样器,而速度快、分离好、应用广的质谱仪作为色谱的鉴
定器,使它们成为目前最好的用于分析微量的有机混合物的仪器。
(2)液质联用与气质联用的区别:
气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分
子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)
得到的谱图,可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合
物分析测定;极性化合物的分析测定;热不稳定化合物的分析
测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析
测定;一般没有商品化的谱库可对比查询,只能自己建库或自
己解析谱图。 所以目前液质联用在环境领域主要应用于有标准
物质参照情况下的定性分析。
电感耦合等离子体质谱ICP-MS 所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15L/min
IR,红外光谱
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外 红外光谱
光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法
应用: 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。
红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知 液态水的红外光谱物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定
UV,紫外光谱:配合物组成及其稳定常数的测定 定量分析结构分析定性分析应用范围定义紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱
当分子中的电子吸收能量后会从基态跃迁到激发态,然后放出能量(辐射出特征谱线)。回到基态 而辐射出特征普线的波长在紫外区中就叫做紫外光谱
定性分析
在有机化合物的定性分析中,紫外-可见光谱适用于不饱和有机化合物,尤其是共轭体系的鉴定,以此推断未知物的骨架结构。此外,可配合红外光谱、核磁共振波谱法和质谱法进行定性鉴定和结构分析,因此它仍不失为是一种有用的辅助方法。一般有两种定性分析方法,比较吸收光谱曲线和用经验规则计算最大吸收波长λmax,然后与实测值进行比较。
结构分析
结构分析可用来确定化合物的构型和构象。如辨别顺反异构体和互变异构体。
定量分析
紫外-可见分光光度定量分析的依据是Lambert-Beer定律,即在一定波长处被测定物质的吸光度与它的溶度呈线性关系。应此,通过测定溶液对一定波长入射光的吸光度可求出该物质在溶液中的浓度和含量。种常用的测定方法有:单组分定量法、多组分定量法、双波长法、示差分光光度法和导数光谱法等。
配合物组成及其稳定常数的测定
测量配合物组成的常用方法有两种:摩尔比法(又称饱和法)和等摩尔连续变化法(又称Job法)。
酸碱离解常数的测定
光度法是测定分析化学中应用的指示剂或显色剂离解常数的常用方法,该法特别适用于溶解度较小的弱酸或弱碱。
NMR,核磁共振波谱
核磁共振波谱分析法(NMR)是分析分子内各官能团如何连接的确切结构的强有力的工具。 磁场中所处的不同能量状态(磁能级)。原子核由质子、中子组成,它们也具有自旋现象。描述核自旋运动特性的是核自旋量子数I。不同的核在一个外加的高场强的静磁场(现代NMR仪器由充电的螺旋超导体产生)中将分裂成2I+1个核自旋能级(核磁能级),其能量间隔为ΔE。对于指定的核素再施加一频率为ν的属于射频区的无线电短波,其辐射能量hν恰好与该核的磁能级间隔ΔE相等时,核体系将吸收辐射而产生能级跃迁,这就是核磁共振现象。
核磁谱在蛋白质研究上的应用
利用核磁谱研究蛋白质,已经成为结构生物学领域的一项重要技术手段。X射线单晶衍射和核磁都可获得高分辨率的蛋白质三维结构,不过核磁常局限于35kDa以下的小分子蛋白,尽管随着技术的进步,稍大的蛋白质结构也可以被核磁解析出来。另外,获得本质上非结构化(Intrinsically Unstructured)的蛋白质的高分辨率信息,通常只有核磁能够做到。 蛋白质分子量大,结构复杂,一维核磁谱常显得重叠拥挤而无法进行解析,使用二维,三维甚至四维核磁谱,并采用13C和15N标记可以简化解析过程。另外,NOESY是最重要的蛋白质结构解析方法之一,人们通过NOESY获得蛋白质分子内官能团间距,之后通过电脑模拟得到分子的三维结构。
最佳回答:
不是
理由有2
第一是并不是所有的有机物都有强的特征紫外吸收,深圳市帝龙科技有限公司会有这样的情况
第二是有频率相近的吸收峰的物质很多,不能完全区分开来
需要精确鉴定一个有机化合物,一般是核磁共振,气-质/液-质联用的
最佳回答:
用机溶剂例四氢呋喃萃取用HPLC(高效液相色谱)检测其否含黄酮类物质定性同做定量
使用TLC(薄层色谱)进行定性检测注意需要至少用两种同展剂使品与标准品比
另外用黄酮碱性环境与铝络合形色络合物通光光度计检测进行定量或半定量检测
感觉这样的提问没有意义
建议自己下去查查资料
最佳回答:
峰高就是蛋白质在280nm处的吸收峰值,因为蛋白质在紫外280nm处有吸收,所以会用紫外280nm检测蛋白质。
然后这个图谱里面的峰型还是不错的,估计你的目标蛋白应该在Fraction20~23的样子。
不过你的紫外曲线没有显示具体是280nm,你可以点开桌面最下Evalution模块,找到你保存的图谱,打开图谱,右击图谱,在右击菜单中选择Properties,找到Curve Names选项,把Curve Name点上。在Curve Style and Color里面可以编辑曲线的颜色和形状,一般第一个就是UV280nm的曲线。
顺便问下 你用的操作软件是Unicorn几点几的?
Leave A Comment